
Journal of  Statistical Physics, VoL 1, No. 3, 1969 

New Applications of Wiener Integrals to 
Engineering and Physics 
Michael Schilder 

Received June 24, 1969 

It is shown that the solutions to quite general problems in nonequilibrium statistical 
physics and engineering can be expressed as Wiener integrals. A new way is also given 
for numerically evaluating these Wiener integrals. 

KEY WORDS: Wiener integrals; diffusion processes; function space integrals; 
stochastic optimal control; Kalman filtering; Langevin equation; stochastic Hamilton- 
jacobi equation; Fokker-Planck equation. 

1. I N T R O D U C T I O N  

1.1. A new method will be given for obtaining numerical answers to quite 
general problems in nonlinear statistical control theory and in nonequilibrium 
statistical physics. It will also be shown that the solution to the nonlinear Kalman 
filtering problem can be expressed as the ratio of  the solutions of  a partial differential 
equation. 

We consider stochastic equations of the type 

~(t) --~ f ( t ,  x(t), ~(t)) q- )~.(t), x(S) = X, 2(S) = Y (1) 

where z(t) is the derivative of Brownian motion, or white noise, x(t) is an n-dimen- 
sional vector, andf ( t ,  x(t), ~(t)) is a fixed vector-valued function of  n arguments. The 
initial values of the Ito stochastic equation (1) can be either fixed or random. Boundary 
conditions can also be included. 

It will be shown that the expected values of functionals with respect to the x(t) 
distribution defined by (1) can be expressed as Wiener integrals. Thus, the variance, or 
the mean of x(t) for any t >~ 5', can be expressed as a Wiener integral; or the pro- 
bability that x(t) is in any (measurable) set of Euclidean space at any time t ~> S. 
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A new method will then be given, involving a power series in A, for numerically 
evaluating Wiener integrals. The coefficients of this power series can be calculated by 
quadratures if the solution to (1) with A = 0 is known and the solutions to a linear 
and a ricatti equation are known. This method essentially provides a rigorous justifica- 
tion for "linearizing" (1) and gives the series of best approximation. 

It will also be shown that the representation of the expected values of functionals 
of solutions of (1) as Wiener integrals gives a new, easy way of deriving some partial 
differential equations of control theory and physics. 

Finally, it will be shown that Wiener integrals can be used to choose t h e f o f  (1) 
in such a way that the expected values of functionals are minimized, much in the same 
way that the calculus of variations is used to minimize nonrandom integrals. 

The remainder of this paper is organized as follows: Section 2 defines the Wiener 
integral and gives some of the basic theory needed for the other sections. In Section 3, 
three partial differential equations are derived. Section 4 considers specific applica- 
tions to statistical control theory, and Section 5 considers specific applications to 
statistical physics. Section 6 gives an approximation method. 

2. THE  W I E N E R  INTEGRAL 

2.1. The Wiener integral, named after Norbert Wiener, who first devised it (see 
Kac (2~) for an excellent history of the Wiener integral), is the integral associated with 
Brownian motion. Brownian motion is, of  course, the motion of a small particle 
suspended in a fluid which is due to the impacts of the molecules of the fluid. Einstein 
was the first to axiomitize this motion. His axioms can be stated as follows: 

@1) Given a particle at position A at time S, its motion after time S is indepen- 
dent of the motions of the particle before time S. 

@2) The distribution, at time tl > S, of the position of a particle which was at 
position A at time S is normal (Gaussian) with mean A and variance tl -- S. 

We now make two assumptions which will hold throughout the remainder of 
this paper. The mass of  the particles considered is unity, and all particles move in one 
dimension only. All the results presented in this paper are invariant with respect to 
the dimension of the space in which the particle moves, so these assumptions will lead 
to considerable notational convenience. All results can be considered as vector 
results, if the proper transpositions are made. 

From axiom (72), the probability that the position of the particle at time tl is 
less than A, given it was at A at time S, which we will denote as 

is 

prob{z(q) <~ Az I z(S) = A}, 

1 exp t 
[z(tO - A]~ 

dz( t O (2) 
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Using axioms (Tz) and (72) and some elementary probability theory, we find 

prob{z(q) ~ A1,  z(t2) <~ A2 .... , z(tn) <~ A~ I z(S) = A} 

[(27r)" (t ,  -- t,_l) "'" (q -- t0)] 1/~ a_~ "'" exp - -  ~ ti ti-1 

• dz(tO.., dz(t.) (3) 

where t o = S, and Z(to) =- A. The expression (3) gives the probability that the Brow- 
nian-motion path z(t) is in the set (see Fig. l) 

{z(S) = A, z(tO Ai ,  "", z(tO An} (4) 

We note that, if, for example, we want the probability that z(t) <~ 10, S ~< t ~< T, 
then we must extend the number of integrations from n to infinity. The integral on 
the right-hand side of  (3) with n finite or infinite is called a Wiener integral. For a more 
detailed exposition of the Wiener integral, see Gelfand and Yaglom, (15) Kac, (23) or 
Wiener et al. (~) The Wiener integral of some function of the paths 

( z ( S ) =  A , S  <~ t <~ T) 

will be denoted by E~w{F(z)lz(S) = A}. 
The Wiener integral can be used to study Brownian motion and the processes 

closely related to Brownian motion, such as the process (1). For example, the auto- 
correlation coefficient of  a stochastic process, p(q ,  t2), is defined as 

where the argular brackets denote averaging. 

S, A g ~ - ~ . ~  (tl'eAi) 

S t 1 t n 

Fig. 1. Typical Brownian motion path in set (4). 



478 Michael Schilder 

(2)], 
In the present case, since, by definition [or by the same reasoning that leads to 

E~W{z(ta)] z(S) = A} = Ez~{z(t~)l z(S) = A} = A 

We have, if t 2 ) q ,  

p(tl ,  t2) = E z w { [ g ( t l )  - -  A][z(te) -- A][ z(S) = A} 

1 f f  = [(2~') 2 (t2 -- h)(tl --  S)] 1/2 -~ -| [z(tl) -- A][z(t2) -- A] 

• exp i--  21 [ [ z ( q ) - - A ]  -- S -k [z(t2)--z(tO]~]Idz(fi)dz(t~)t~ --  tl 

Some calculation shows this to be q -- S. If  t z ) t~, then in the same way, 
p(fi ,  t~) = t~ -- S. Therefore, we have used the Wiener integral to prove that the 
correlation coefficient of Brownian motion is 

p(tl ,  t2) ~ min(tz -- S, t2 -- S) (5)  

In the same way, it follows 

and 

E ~  lz(t + A) -- [ z(S) = A I 

[ (2 ,0  ~ (A) ( t  - S)ll/'. J . . . .  J ,1 

• exp I 12 [.[z(t + A)A -- z(t)]2 -k [z(t)t ----sA]" ]I dz(t)dz(,  4- A) 

= 0 if A =/: 0 (6a) 

1 ~o oo 2 

---- [(2rr) 2 (A)(t _ S)] 1/z f_~  ~ [ z(t q- A)A -- z(t) ] 

• exp 1--2[1 [z(t -t- A)A-- z(t)]2 § [z(t)t_S-- A]" ']I dz(t)dz(t q- At)  

1 = ~- if A =/: 0 (6b) 

Therefore, while the mean of ~(t) can be defined as 

lim E2~{[z(t q- A)  - -  z ( t ) /A]l  z (S)  = A}  = 0 
A->0 

the variance of~(t), if it exists, is clearly infinite, by (6). 
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2.2. One might therefore equestion exactly what Eq. (1) means. Ito (2~) was 
the first to show rigorously how stochastic equations of  the type 

Jc(t) = f(t, x(t)) + )t~(t) 

could be defined (however, this type of equation was considered before Ito by physi- 
cists as the Langevin equation; see Chandrasekhar(6)). 

It  will now be shown how stochastic equations of  the type (1) can be rigorously 
defined using a generalization of Ito's method. We suppose ~(t) is defined as 

dc(t) = Ay(t) (7) 

Since x(S) = X and e(S) = II, it follows that 

t 

x( t )=  A f y(~) da + X (8) 
S 

Ay(s) = ~ ( s ) =  y (9) 

I f  we substitute (7)-(9) into (1), the result is 

)t~(t) = f (t, A SsY(a) d~ + X, ?ty(t)) -P- l~s(t), Ay(S) = Y (10) 

Integrating both sides of  (10) from S to t and dividing by A, we get 

f f (~,A y y(fl)d e -P- X, Ay(lx)) dec + z ( t ) -  A -t- YIA (11) y(t) = (l/A) s s 

where the substitutions z(S) = A and y(S) = YtA have been made. 
Since it can be proved that Wiener measure can be defined so that almost all 

z's are in C[S, A, T], where C[S, A, T] is the set of  all continuous functions on the 
interval [S, T] whose value at S is A, it follows that solutions to the integral equation 
(11) can be defined in the usual manner. I f  f ( - , . ,  .) is not suitably restricted, of  course, 
(11) may have none or more than one solution for some z's in C[S, A, T]. If, however, 
certain conditions are put onf ( see ,  for example, Doob (s) or Dynkin(9)), then (11)has 
exactly one solution, y(t), for each z a C[S, A, T]. 

This correspondence can be written explicitly as 

y(t) = T(t, z), (12) 

since, as stated above, for each z(t), S ~ t <~ T, there is exactly one solution, y(t), of 
(11). Equation (12)just writes out this correspondence. It is, of  course, a nonlinear 
transformation of  C[S, A, T] into C[S, Y/A, T), where YIA is, of  course, the initial 
position of  the y(t) process. We can now define ar field and a probability distribution 
on the y space using (12). The distribution on the y space is called the Ito distribution, 
because it is induced by the Ito equation (1). If  F(y) is some measurable, integrable 
function defined on the y space, we denote its integral as 

EJ{F(y)I y(S) = Y/a} (13) 
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We define its integral to be [using (12)] 

EJ{F(y(.))] y(S) ~- I1//I} = E,w{F(T( �9 , z))l z(S) = A} (14) 

For an exposition of the theory of measure-preserving transformations, see 
Halmos. ag) Since the integral (13) is now defined, it is possible to define any parameter 
of the y distribution. The variance of y at time T is, for example, 

E~/{y2(T)] y(S) = Y/h} = E~{[T(T, z)]2l z(S) = A} 

As another example, let B be a measurable set in C[S, Y/A, T] and let XB(Y) be the 
following function: 

XB(Y)= 1 if y E B  
(15) 

= 0 if y 6 B  

Then the probability y is in B (B might be, for example, {y ~ C[S, Y/A, T] y(t) <~ 10, 
S ~< t ~< T})is, by definition EJ{Xn(y)[ y(S) = Y/A}, which is, by (14), E~W{x~(T(.,z))l 
z(S) = A}. 

It will be shown (Theorem 2.1), by changing variables, that the Wiener integral 
on the right-hand side of (14) can be expressed in a manner which does not require 
solution of the nonlinear integral equation (11) for all z ~ C[S, A, T], which is, of 
course, in general, a hopeless task. Now that the y integral and distribution have been 
defined, it is possible, in the same way, using the 1-1 set of transformation equations 
(7)-(9), to define the x distribution of Eq. (1), which we again call the Ito distribution. 
Suppose F(x(.), :~(-)) is a function which is measurable and integrable with respect to 
the x distribution to be defined. Then, by definition, 

EJ{F(x('), 2('))r x(S) = x ,  ~ ( s )  = z )  

+ x, y(S) = r/A I 

z)d  + x, At(. ,z)) A I (16) 

That this definition is, in fact, the same as the classical definition will be seen when 
it is shown that the distribution function of x(t) and 0~(t) satisfies the classical back- 
wards equation. 

The case when Eq. (11) does not have unique solutions, while not considered in 
this paper, is interesting and physically relevant. See Cameron m for some details on 
this question. 

2.3. Now let G(t, z(')) be a measurable and (possibly) nonlinear function space 
operator which takes continuous functions on [S, T] into continous functions on 
[S, T] and is such that G(t, z t does not depend on z past time t. The G(t, z) might be, 
for example, G(t , z ( . ) )= SsZ(~)doL + x ,  or the transformation (12). However, 
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G(t, z(')) could not be G(t, z(.)) = f f  z(~) d~, t < T, since this G(t, z(')) depends on 
z past time t. Ito (m has defined an integral 

f 2 f ( t ,  G(t, z(')),z(t)) dz(t) 

which makes sense for f ' s  that are necessarily continuous. (See also Doob, (s) 
Dynkin, {9) and Nelson. (32) Nelson calls this integral the Wiener integral, and gives 
no name to what we and most other authors call the Wiener integral). 

It can be shown that (see Dynkin(9)), for rather weak conditions o n f a n d  G, 

E." i f'sf (~, G(o~, z(')),z(cO) dz(o 0 z(S) ~ A I = 0  (17) 

and 

2 ,4 ,  

generalization of a result given in Gelfand and Yaglom. (zS) 
Three lemmas will now he proved which will be needed later. They are a 

L e m m a  2.1. Iffl(c~) ...... f,~(c 0 are in L2[S, T], then 

E~W l f s fa(c~l) dz(aa) "'" f~sf~(c~) dz(~)' z(S) = A I = 0  

if m is odd, 

+ 

if m is even 

t Proof. The integral fsf~(c~)dz(a) is defined to be the L 2 limit (with respect to 
Wiener measure) of step functions of the type Zf~(ti~) Azi k , where 

A %  = z( t~+l)  - z ( t~) .  

Let {tj} be a partition of the interval [S, T] which is a refinement of the partitions 
generated by the ti,. Let Azj = z(tj+l) -- z(t~). We note, by axiom (70 or by the 
definition of the Wiener integral, that the Az's are independent, and, therefore, 

E~{(Azh)~x (Azj~)~ ... (Azh)"~ [z(S) = A) 

= ( E / ( ( ~ ) " ~  I~(S)  - -  A))  . . .  ( ~ / ( ( ~ ; ) " ~  F z (S )  = A))  



482 Michael Schilder 

I t  can also be seen tha t  

G ' q ( A z 3 "  i z(S)  = A} 

1 [ [  
[(27r) ~ (t~+~ - -  t~)(t~ --  S)] ~/~ -~  -o~ [z(t~.+0 - -  z(t~)]" 

- [~(,4-N.I 1 [z(tr z(t~)]~ + I dz(tr dz(t~+l) 

let 
wl = z(tj+l) - -  z(t~)/(t~+l - -  tj) 1/2, 

Therefore,  

E~q(zlz3~ l z(S)  = A} 

Wo = z(tj) - -  Al(ts  - -  S)  ~/~. 

1 g ~o r 1 2 
---- (tj+ 1 - -  tj)n/2~-~" J_~  (W1) n exp [ - -  ~ + (Wl Wo) 2] dwl dwo 

= (tj+l - -  tj) ~/2 (2~r)1/- ~ -~ (w0 '~ exp d %  

F r o m  tables, we find this to be zero i f n  is odd  and  (tj+l - -  tj) ~/2 [1 �9 3 "" (n - -  1)] i f n  
is even. Some rather  tedious combinator ia l  analysis shows tha t  

i f  m is odd, since, i f  one interchanges the above finite sums and the integral, there 
will always be an odd number  of  factors in each integral. I f  m is even, then (19) is 

Z A( t j )  f2(t~)(t~+l - tj) Z A ( t 3  fdt3(tr - t3 ... Zfm_z( tr  f~(ty)(t ,  - tr 
J 

+ ... + ~ , f l ( t ) f ~ ( t ) ( t j + l  - t )  . . .Ef .~/2)_l( t) f~/~)+l(t)(q+~ - t )  (21) 
J J 

Since the functionsf~(t)  are in L2[S, T], it follows tha t  the sequence o f  step func- 
tions converges properly,  and the expression (21) converges to the r ight-hand side of  
(19), which proves the lemrna. 

L e m m a  2.2. I f f l ( t ) , . . . , f ~ ( t )  are in L~(S, T) ,  then 

[ r  t l  ~2 *m 

i f  m is odd, and is 

fmin ( t l #Z)  . . . .  rllatIllta,t4) eI l l inI tn_l , t  n) 
f~(~)J2(~j d~ J s  f~(~)f~(a)  da ... J s  fn_l(oOfn(~) dcx 

S 

+ ' -~ j ~  .fd~,)f~d~) ao, ... ~ / im/, ,_~(~,)f(,~/~+&,) do, 

i f  m is even. 
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Proof. The proof  follows immediately from lemma 2.1 by letting 

t = max(q ..... t~) 

and by extending the f~(o 0 to the interval [S, T] as f~(ec) = 0, h ~< ~ ~< T. 

2.5. We now quote a result on the Ito integral known as Ito's integration by- 
parts formula. 

L e m m a  2.3. Suppose F(t, X, Y) is defined for all real X a n d  Yand S ~< t ~ T. 
Suppose Ft, Fx,  and F:r exist and are continuous there, and suppose z(t) is Brownian 
motion with z(S) = A. 
Then 

The last integral on the right-hand side of (22) is an lto integral. 

Proof. The proof  follows directly from Dynkin's (9) theorem 7.2 and an applica- 
tion of the rule for differentiating composite functions. 

We note that, if z(t) were an ordinary differentiable function of t, (22) would 
follow directly from the rule for differentiating composite functions, if it were not for 

T 
the term �89 Fyy(t, fs z(~) dec, z(t)) aft. The reason for the appearance of this term is 
given by Eq. (6); lim~_~0(A/1 {[z(t + At) -- z(t)]/A}~ is not zero (as it is for ordinary 
functions), but 1. 

2.5. The Wiener integral of F(z), E~ ~~ {F(z)l z(S) = A} is usually denoted in 
physics works as 

1 .T  dt I dz 

(see Feynman (m or Donsker, (7) for example). This is so because the Wiener integral 
of the function F(z) can be defined as [see Eq. (3)] 

' f f l i r a  [ ( 2 , , ) "  - t , _ l )  ' (r - t0/ll/  - -  

1 [ z ( h + 0  - -  z ( t 0 ]  e ) 
• exp t-- -2 ~ t~+z- h t dz(q).., dz(tn) (23) 

where t o ----- S and z(to) ~ A, and where the sequences (tj) are becoming dense in 
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[S, T]. Multiplying numerator and denominator of the fractions in the exponent by 
(ti+z -- ti), we get 

1 f~ ~ lira [(2~r),, (t~ -- tn--1) "" (tl -- t0)] *n _~o "'" J _ ~  F(z(t ,)  ..... z( t , ))  

1 2(1r z(ti) 
]2 (t,+l -- ti) I dz(q) "" dz(t~) (24) •  ti+l -- 

If 2(t) existed and was in L2[S, T], then the term inside the exponent would 
become --�89 .~T[~(t)]2 dt as n --+ 0% and then we could write, using (19), 

1 
[~(t)] 2 dt] (25) E~ w IF(z )z (S)= A I = I F(z)exp [ - - ~  f~ 8z 

where [(...) 8z means 

li.m [(2~v),~ (t, -- t~_l) "'" (tl -- S)] 1/2 -~o "'" -~ (" "') dz(tl) ... dz(t~) (26) 

Un fortunately, however, the integral (26) does not exist (see Gross(~S)), and by 
(6), neither does (e(t)) 2. Yet the representation (25) is useful for understanding certain 
theorems about the Wiener integral. 

2.6. We now suppose thef( t ,  X, Y) of Eq. (1) to have the following properties: 

(c 0 f(t ,  X, Y) is jointly measurable in each of its three variables. 

(fi) The nonlinear integral equation (11) has a unique solution for almost 
every z ~ C[S, A, T]. 

(y) There exists a nondecreasing function of a real variable f0 such that 
If(t, Its z(a) dc~, z(t))[ <f0(sup I z(t)[). Conditions (cQ and (7) are easily verified for a 
given f. Sufficient conditions for (fi) to hold are given by Doob r and by Dynkin, r 
Chapter 11. 

One of the important theorems of this paper will now be stated (see Dynkin, C9) 
Girsanov, ~1~) or Schilder (37~ for other hypothesis to this theorem) 

T h e o r e m  2A. Suppose f( t ,  X, Y), satisfies conditions (a)-(7), and F(x, ~)is 
any integrable function with respect to the Ito distribution defined by (16); then 

E/{~(x( . ) ,  4 9 ) !  x(S) = X, ~(S) = Y} 

= E~ ~ IF(A f2'  T(t ,z)dt + X, AT(" , z ) ) z ( S ) =  A I 

•  [(--1/212) f : f 2 ( t , Z  ffsy(~)d~ + X, Ay(t)) d, 

+ ( 1 / ) t ) f : f ( t , A  .f; y(~)d~ + X, Ay(T))dy(,)] y (S )=  Y/A I (27) 

The iast integral in the exponent of the Wiener integral is an Ito integral. 
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Proof. The proof follows directly from Girsanov's (m theorem 2. To see why 
formula (27) is true, we note, from (16) (by definition), 

EJ{F(x, 2)j x(S) = X, 2(S) = Y} 

By (25), the last expression is, heuristically, 

( ' )  1 r [~(t)]~ dt I IF(h  fs  T(~,z) da+X,  hT( ' , z ) )expI--~f  s .~z (29) 

By (12), T(t, z) = y(t), and, by (10), e(t) = y(t) -- (1/,~)f(t, f~sy(o 0 d~ + X, )y(t)). 
Substituting these two expressions into (29) (we are, of course, actually changing 

variables), we get 

1 T t 2 

• exp 1--2 fs[J~(t)--(1//~)f( t'A fs y(a) d~ + X, Ay(,))] d, i Sy 

This integral becomes, upon squaring out the ternl in the exponent, 

I F(A f;)y(~)do~ 4- X, Ay(-))exp i(--1/2A~)f;f2 (t,,~ f;y(a)do~ 4-X, Ay(t))dt 

1 r dt t 

By (25) again, this is 

which "proves" Theorem 2.1. The reason this is not a good proof is that the integral 
defined by (25) does not really exist. 

Equation (16) shows that the expected values of functionals with respect to the 
x distribution defined by (1) may be expressed as Wiener integrals. This representation 
is, however, of little value, since it requires, in general, a solution of a nonlinear 
integral equation. Theorem 2.1 shows that expected values of functionals of the x 
distribution may be expressed as Wiener integrals; one simply has to multiply them 
by the factor exp[(--1/2)t 2) fr~f 2 dt 4- (1/?t) fTfdy(t)]. This factor is, of course, a 
Radon-Nikodym derivative. The notation f = f(t, )t f: y(~) d~ 4- X, 1y(t)) will be 
used for the remainder of the paper if the meaning is clear. 
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Corol lary  2.1. Suppose F(t, X, Y) satisfies the conditions of Theorem 2.1; 
then 

E ~  lexp [ (_1 /2A2)f ; f2  d t -  ( l / A ) f ; f d z ( t ) ]  z ( S ) =  Y/h! = 1  

Proof. We let the F(x(.), 2(.)) of Theorem 2.1 be identically equal to one. Then 
the left hand side of Eq. (27) is one, since E J{ ..- I x(S) = X, 2(S) = Y} is the integral 
of a probability distribution. By Theorem 2.1, the right hand side of (27) is one. 

2.7. The formula for conditional probabilities is 

Prob{B I C} = Prob{B c~ C}/Prob{C}. 

This formula can be generalized to integrals as follows. By definition, for B and C 
measurable sets in function space, 

EJ{F(x('),  2('))1 x(S) = X, 2(S) = Y, x ~ B, 2 ~ C} 

EJ{X,(x ) Xc(2) Ft, x('), 2('))1 x(S) =- X, 2(S) = Y} 
E~{X~(x) Xc(2)I x(S) = X, 2(S) = Y} 

(30) 

The notation on the left hand side of (30) reads, "The expected value of the 
function F(x(-), 2(-)) with respect to the Ito distribution given that x is in B and 2 is in 
C is " 

A lemma is now given that will be used in Section 5. 

L e m m a  2.4. Suppose the integral of F(z) with respect to Wiener measure 
exists; then 

E~{F(z)l z(S) = A} 

: Ez w F(z) z ( S ) - = A ,  z(a) da----R dProb z(o Oda=- R dR (31) 
- - o o  S , S 

d Prob{j "r z(a) d~ = R} is the density function of the random variable f r  Z (a) do~. 

Proof. ff  Ci,  i = 1, 2, 3,..., is a collection of disjoint sets whose union is the 
whole set, then a well known formula from elementary probability theory states 
Prob{B) = (Prob{B ] C~})(Prob{C~)). The analog of the formula for integrals is 

E~~ z(S) = A} = ~ E~ ~ F(z) z(S) = A, z(a) do~ ~ C~ 
i S , 

• Prob z(o 0 dc~ ~ C~ z(S) = A 
S �9 

Let C~ be a collection of nonoverlapping intervals on the real line whose union 
is the entire real line, and let t Ci ! be the length of Ci. 
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From the above, 

Z~{r(z)l z(S) = A} 

= Z E~ w F(z) z(S)  = A, z(~) d~ ~ Ci 
i S 

t " i S  

T 
If the C~ now shrink down to points, then Prob{f s z(c 0 d~ ~ C~ ] z(S) = A}/Ci 

T 
becomes dProb{fs z(~) d~ = R [ z(S) = A}, Ci becomes dR, and ~ i  becomes an 
integral, which proves Lemma 2.4. 

3. PARTIAL DIFFERENTIAL E Q U A T I O N S  ASSOCIATED W I T H  
W I E N E R  INTEGRALS 

3.1. It is well known (see Doob, (s) for example) that the probability distribu- 
tion function associated with Eq. (1) satisfies a parabolic partial differential equation 
called the backwards equation. From the discussion of the previous section and Theorem 
2.1, it follows that this probability distribution function may be expressed as a Wiener 
integral, and therefore that the resulting Wiener integral satisfies the backwards 
equation. This fact will now be shown directly. First, however, a lemma is needed. 

L e m m a  3.1. Suppose g(t, X, Y) is jointly continuous and defined for 
S ~ t ~< T, with Xand Yreal. Supposef(t, X, Y) satisfies the conditions of Theorem 
2.1; then 

Proof. Let T(t, z) be defined by (12). Dynkin (9) shows the Ito integrals 

are well defined. By Theorem 2.1, 

equals the left-hand side of (33) [again, this is really only the change of variables 
= 29 -- (1/A)f]. But (33) is zero, by (17). 



488 Michael Schilder 

T h e o r e m  3.1. Suppose f(t, X, Y) satisfies the conditions of Theorem 2.1. 
Suppose Q(t, X, I1) satisfies, for S ~< t ~< T, with X and Y real, 

Qt(t, x, Y) +f(t ,  X, Y) Qr + YQx + L(t, X, Y) -}- }A~Qrr = 0 (34) 

with 
Q(r, x, I1) -- r y). 

It is assumed that, in the region considered L, Q~, Qx, Qr, and Qxr exist and are 
continuous. Then 

(35) 

Proof. By Theorem 2.1, the right-hand side of (35) is 

•  [ ( - - I / 2 A ' ) f ; f ' d t  4-(I/A)f:fdy(t)] y(S) = Y/~I (36) 

By hypothesis, 

Substituting this into (36) and using the Ito integration by-parts formula (22), (36) 
becomes 

T T T T 

•  Qxy(t) dt 4-1/2A' f Qrrdt q- A f Qrdy(t)§ f Ldt 
S S S S 

x exp [(--1/22t ~) fSf~dt + ( l /A) f : fdy( t ) ]  y(S)= Y/'~I 

to 

(37) 

The partial differential equation (34) is now substituted into (31), which is equal 

x exp [(1/2~ 2) f:fedt + (l/A)f:fdy(t)] y(S)= Y/~l 
which equals 
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The second integral is zero, by Lemma 3.1; the first is Q(S, X, I0, by corollary 2.1. 
This proves the theorem. 

If, in (34), we let L = 0 and 4(X, 10 = 1 i f X  ~< X~ and Y~< Yt and zero 
otherwise, then (34) becomes the backwards equation. Also, the integral (35) becomes 
exactly the probability that x(T) <~ X~ and y(T) ~< Ya, as it should. 

3.2. Consider now the problem of minimizing 

R(s, x, r, u( . , . ,  .)) 

: EJ If~ L(t,x(t),~(t),u(t,x(t),Yc(t)))dt-~(x(T),~(T)) x ( S ) :  X, ~(S)~- YI 

(38) 
where x has the Ito distribution defined by 

= f(t, ~(t), x(t), u(t, x(t), ~(t))) + Ae(t), x(S) = X, ~(S) = Y (39) 

over a set of "control functions" u, where u(t, X, 10 is contrained to lie in some set U. 
We will derive an equation for the minimal R, using Wiener integrals, and show 

that, for an important special case, the solution of this equation can be expressed in 
terms of a Wiener integral. A u which minimizes (if one exists) the R of (38) will be 
called u*(t, X, 10. Let R*(S, X, Y) ~- R(S, X, Y, u*(.,., -)), and f*(t ,  x, ~) 
f(t, x, 5r u*(t, x, ~)). 

Also let 

H(t, X, Y, R) = inf {f(t, X, Y, u(t, X, Y)) Rr + YRx + L(t, X, Y, u(t, X, Y))} (40) 
uEU 

Definition (40) means that, for eachfixed t, X, Y, and R minimize the right-hand 
side for u e U. Call a u so obtained ft. 

T h e o r e m  3.2. Suppose f(t, x, ~, u(t, x, ~)) satisfies the assumptions of 
Theorem 2.1 for u in some control class U. Suppose the function L(t, X, IT, u(t, X, 10) 
is defined and continuous, S ~ t ~< T, with X and Y real or each u ~ U. Suppose 
that the differential equation (the stochastic Hamilton-Jacobi equation) 

/~ + ~7(t, x ,  Y,/~) + �89 = 0 (41) 

has a continuously differentiable solution/~. Then/~ ----- R* (the minimal value of R) 
and the u defined by (40) is a u*. 

Proof. From (22), if z(t) is Brownian motion 

= f~ [Kt + �89 q_ AKxZ(t)] dt q-A f~ Rydz(t) (42) 

8221113-8 
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From (40) and (41), it can be seen that the integral with the brackets is 

f r  , f ,  s--f  (t,A fsZ(O~)do~ + X, Az(t)) "~.(t,)t sZ(a) d~ + X, 7tz(t)) 

- -  E (t,A f:  z(oL) da + X, Az(t)) dt 

where 

f(t, x, Y) = f(t, x, Y, ~(t, X, Y)) 

Since 

R(S, X, Y) 

and E(t, X, IT) = L(t, X, Y, fi(t, X, Y)) 

(43) 

= ~o l~(s, ~, ~ ( ~  exp I-(2~0~-1 S : J ~  + ~-1 S?~ '~I  ~(s~ = ~-1 t 

wheref(t, X, Y) = f(t, X, Y, u(t, X, Y)), and u is any u ~ U, it follows by substituting 
(42) and (43) into the last equation that 

R(S, X, Y) 

• exp [(--1/22')f~fAdt + (l/A) f : fdz( ,)]  z(S)= Y/~I 

-- A s -~r dz(t) + R (T, A z(c~) do~ + 

•  [(--1/2A ~) fSf~ dt + (l/A)fSfdz(t)][z(S)= YIA t 

From Lemma 3.1, it follows that 

•  [(--I/2A ~) fSf~dt + (1/) 0 fSf dz(t)]lz(S) = YIA I : 0  

Thus, 

~(S, Jr, IT) 

= E / l [ f :  (f/~r + E--  ~ f f ) d t  + R (7.2 f:z(cc)& + X, Az(T))] 
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For any u ~ U, it follows that, since/~(T, X, Y) ----- r Y) from the definition 
(38) and Theorem 2.1, 

•  [(--1/2A l) f : f~d t  + ( l /A)f : fdz( t ) ]  z(S) : Y/A I 

Subtracting K from R, we have 

l; R(S, X, Y) -- ~(S, X, Y) --- E.~ ( fRy  + L) -- ( ~ f  + L) dt 
s 

• exp [--(1/2A 2) fSf~ dt + (l/A) fSfdz(t)] z(S)= Y/)t! 

but, by (40) f /~r  + L ~ f / ~ r  q- E for all u c U and all X, Y, and t. Thus, 
R(S, X, Y) ~ R(S, X, Y). QED. 

The proof is practically a literal translation into the terminology of this paper of 
the one given in Wonham.~4n) Wonham specifically states that his proof is not rigorous. 
The proof of Theorem 3.2 is, however, perfectly rigorous--due to the assumption 
that Eq. (41) has a continuously differentiable solution. 

3.3. In this section, it will be shown that, i f t he f and  L of Theorem 3.2 are of a 
special form, then the solution of Eq. (41) can be given in terms of Wiener integrals. 
Let L be of the form 

L(t, X, Y, u(t, X, I1)) = L(t, X, Y) + �89 X, }7) (44) 

and f be of the form 

f(t, X, Y, u(t, X, Y)) = f(t, X, Y) + u(t, X, Y) (45) 

and let the control class U be the set of all functions such that the f of (39) satisfies 
the assumptions of Theorem 2.1. 

It is easily seen that [see (40)], for this case, 

H(t, X, Y, R) 

----- min{(f(t, X, 1#) + u(t, X, Y)) Rr + YRx + L(t, X, Y) + �89 X, Y)} 

= f(t, X, Y) Rr + YRx + L(t, X, Y) -- �89 

since the u which minimizes Hin  this case is u = - -Rr ,  or u(t, X, IT) = --Rr(t, X, Y). 
Thus, in this case, Eq. (41) becomes 

R~ + f a r  + YRx + E -- �89 ~ + �89 = 0, R(T, X, Y) = r IO (46) 

where r can be any continuous function. 
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In this case, the Ito distribution of x for the optimal u by Theorem 3.2 is given by 

50 = f(t ,  x(t), ~(t)) -- Rr(t, x(t), ~(t)) -{- A~(t), x(S) = X, 2(S) = Y (47) 

It will now be shown that the expected values of functions with respect to this 
distribution, henceforth called the optimal distribution, can be expressed in terms of 
Wiener integrals, without solving (46), and that the solution to (46) can be expressed 
as a Wiener integral. It is shown in Section 6 how to obtain series expansions for 
and ~. 

T h e o r e m  3.3. Suppose the functionsfand L satisfy the hypothesis of Theorem 
3.2 and that they are in the form given by (44) and (45). Suppose, also, that (46) has 
a well-defined solution; then 

Ex~ ~)1 x(S)  = X,  ~(S) = Y} 

where Ex~ ...} is the distribution defined by (46) and (47). 

Proof. From Theorem 2.I and (47), 

s 

+ (1/~) f]fdz(t)- (IlA) f :  " ,dz( t )]  z (S )=  Y/A I 

From (22), with R substituted for F, 

r r r 1A ~ r 
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Solving this expression for (1/,~) fs  r dz(t), and squaring out the 

--(1/2~t ~) f~ ( f  -- Pry) 2 dt 

term, we get 

l (" z(~)dc~ + X, hz(.)) E~~ ~)[ x(S) -- X, 2(S) -~ Y} -= E. w F (a f s  

•  1 ~ 

Rr 2 I Rrr) dt 2 -k A-~ -k A-1Rxz(t) -t- 

+ 1/A -~ f~fdz(t)+ [.(S,X, Az(S)) 

+ = 

From the partial differential equation (46), it follows, by substitution into the 
integral of the exponent, that 

E~~ 2)1 x(S) = X, 5e(S) = Y} 

•  [(--1/) 2) fS  (L -t-2 f2) dt + (1/,~) fS fdz( t )  

-- + (;~ f ;z (~)d~ -t- X, Az(T))/2t'] z(S) = Y/A( exp[t~(S, X, Y)/A•] (48) 

If, in (48), we let F(x, e) ~ 1, then, from Corollary 2.1, it follows that 

E,~ Ix(S)  = x ,  ,~(s) = y )  = 1 

and, therefore, that 

l=E~~ f ~ ( L + } f ~ ) d t  

+ ? fdz(t) -- r f s  d~ = exp 
(49) 

From (48) and (49), this time with a general F(x, ~) in (48) it follows, by solving 
(49) for exp[R(S, AT, Y)/,~], that 

E~~ ~)r x(S) = X, :~(S) = Y} 

= E~ ~ 1F (h f ;)z(~)d~ -}- X, hz(-)) 
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•  [(--1/A ~) fS (L + l f ~ ) d t  + (l/h) fSfdz(t) 
- + = 

§ E. w lexp [(--1/12) f l  I (L -I- l f~ )d t  

-I-(I/I) f~f dz(t)- 4)(t f~z(~)d~ § X, lz(T))/I'] z(S) = Y/I 1 

which was to be proved. 
The following corollary follows immediately from (49) by solving it for R(S, X, 11). 

Corollary 3.1. If f, L, and R satisfy the conditions of Theorem 3.3, it follows 
that 

T fT 
R(S,X, Y) --A~'In.(E~ ~ texp [ ( - - i / h ' ) f s  (L d - l f ' ) d t  + (I/~) sfdz( ')  

Corollary 3.2. If f, L, and R satisfy the conditions of Theorem 3.3, then the 
solution to (46) is given by (50). 

Proof. The proof is immediate. 

Lemma 3.2. Continuously differentiable solutions to the nonlinear partial 
differential equation (46) are equivalent to positive, continuously differentiable 
solutions of the linear equation 

W~ --k f Wr § Y W x -  (L W/,~ 2) -k �89 ~ Wrr = O, W(T, Z I7) = exp[--~(2", Y)/A 2] 
(51) 

under the transformation 

W(t, X, Y) = exp[--(1/1 ~) R(t, X, Y)] 

Proof. Let W be defined by (52); then 

W~ -= -- WRJA 2, Wx = -- WRx/t ~, 
Wry = (-- WRyI,/A 2) @ (WRrr/) 4) 

Upon multiplying (46) through by --(1/t 2) W and 
result follows. The terminal condition is obvious. 

Wr = -- WRr/t 2, 

(52) 

(53) 

using relations (53), the 

Theorem 3.4. Suppose equation (51) has a positive, continuously differen- 
tiable solution W(t, X, Y), and suppose 

g(t, X, Y) = f(t, X, Y) + 12(In W)r 
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satisfies conditions (c~)-(~,) of Section 2; then 

0) 
W(S, X, Y)= E: lexp [(--I/A') f~ (If~.~_ L)dt 

(ii) The hypotheses of Theorem 3.3 are satisfied by g and L, and therefore 
Theorem 3.3 and Corollary 3.1 hold for this g and L. 

Proof, The proof follows immediately from Lemma 3.2, Theorem 3.3, and 
Corollary 3.1. 

3.3. Dynkin (9) has proved Theorems 2.1, 3.1, and 3.4 under different sets of 
hypotheses. In particular, he shows all these theorems are true, if suitably modified, 
under the hypothesis that the particle stays in a certain region of space, or equivalently, 
that the solutions to the partial differential equations (34) and (51) vanish outside a 
given region. 

Unfortunately, he usually does not consider the time-dependent case. He shows 
existence and uniqueness for differential equations (34) and (51), and these results 
makes Theorem 3.3 applicable in a rather general sense. Due to lack of space, his 
results cannot be listed here. (See also Skorokhod. m)) 

The nonlinear transformation (52) was first used by Hopf.(2~ It was first used for 
Wiener integrals by Donsker. Varadhan (4~ was the first to show that the Wiener 
integral could be used to solve an equation similar to (46). The author (~8) was appa- 
rently the first to notice that Wiener integrals could be used to solve stochastic 
extremal problems. A hint of how Theorem 3.3 might be generalized to solve more- 
general stochastic Hamilton-Jacobi equations might be in Varadhan's work. (4~ 

A more general version of (1) is 

Jr = f ( t ,  x(t)) + B(t)~(t)  (54) 

where x(t), f ( t ,  x(t)), and z(t) are possibly vectors, ~(t) is Brownian motion, and B(t) 
is a possibly singular matrix. In Schilder, (3s) it is shown how this more general type of 
equation can be transformed into (1). 

4. A P P L I C A T I O N S  T O  S T O C H A S T I C  C O N T R O L  T H E O R Y  

In this section, we give some applications to the theory of modern stochastic 
control theory. For a more detailed discussion of the problems and procedures of 
modern control theory, see Friedland et al.(14) or Wonham.(4~,46) 

A fairly general problem in control theory is to describe the probabilistic structure 
of  the path of an airplane, satellite, or rocket whose dynamics are controlled by an 
equation of the form 

= f ( t ,  x(t), ~(t)) + ~( t ) ,  x(S) = X, so(S) = Y 
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This problem, of course, has been discussed previously in this paper. It follows 
from Theorem 2.1 that, for any function F(x, 2) measurable and integrable on the Ito 
process defined by (1), 

EJ{F(x, ~)1 x(S) = X, ~(S) = r} 

= E~ ~ IF (;~ f;> z(~)d~ + X, az(.)) 

•  [--(1/22t g) f ; f 2  dt-}-(I/A) fSfdz(t)]lz(S ) = Y/A! (55) 

If  we let F(x, 2) = Ix(T)] ~, then (55) is a formula for expressing the value of 
the nth moment of the position of the vehicle at any time T > S. 

7If we let F(x, 2) = [:~(T)] ~, then (55) is a formula for expressing the value of the 
nth moment of the velocity at a time T > S. 

If  we let F(x, 2) = 1 when x E A, and F(x, ,~) = 0 when x r A, then (55) is a 
formula for the probability that the vehicle stays in a given region A, which might be, 
for example, a vicinity of the moon. 

The control problem was considered in Sections 3.2 and 3.3. The problem is 
now, not only the description of the path of the vehicle, but also the necessity to make 
the vehicle move in such a way that the quantity R of (38) is minimized. The quantity 
L of (38) might be, for example, the amount of fuel used by the vehicle, and r 2) 
might be the sum of the distance the vehicle is from a given spot (the moon) and the 
square of its velocity. Clearly, in designing a control u for the vehicle, one wants to 
minimize the total amount of fuel used, the distance from the terminal place at the 
terminal time, and the velocity at the terminal time (if one wants to stop at the ter- 
minal time). 

It was shown (Section 3.3) that, for a special case, this problem can be explicitly 
solved in terms of Wiener integrals. This special case could cover the above example, 
if the force is additive. More research will undoubtedly show how to express the 
solutions to more general control problems in terms of Wiener integrals or integrals 
closely enough related to Wiener integrals so that the approximation techniques of 
Section 6 can be used. 

We consider now a slightly different problem. In most control problems, one has, 
at best, only a foggy notion of the exact position or velocity of the vehicle. The control 
problem described in Section 3.2 implicitly assumed that the position and velocity 
were exactly known to the control u--since u was assumed to be a function o f x  and ~. 
Thus, a closer approximation to reality can be obtained if it is assumed that one can 
know x and :~ only up to some noise factor. 

The general solution to the control problem when there is noise in the force 
factor and when there is noise in the control system has not yet been obtained--not 
by Wiener integrals, nor by any other method, except in the linear case. 

However, Kalman and Bucy ~25a~ showed how an optimal estimate of the position 
and the velocity of the vehicle could be obtained given certain noisy observations of 
position and velocity. Kalman also showed that his method had close connection to 
the Wiener technique of analyzing stationary time series. Kalman, however, assumed 
that the force equation (1) was a linear equation. 
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I t  will now be shown that a general solution to this problem, henceforth called 
the Kalman problem, can be obtained for nonlinear equations in terms of  Wiener 
integrals? 

Consider now the system of equations 

xl = fa(t, xl(t), Yq(t)) -~- ,~21(t ) 

5~2 = f2(t, x2(t), xl(t), 2l(t)) -k 20,2(0 (56) 

x~(S) = x l ,  ,~(s) = rl 

where zl(t ) and z2(t) are two independent Brownian motions and xl and x2 are two Ito 
processes. 

The Kalman problem now is, given that we know x2, what is xl ? Or, more (less) 
exactly, since xl is a random quantity, what is the distribution of  xl given that we 
know x2(t), S ~ t <~ T? 

The distribution of xz given x~ will, of course, following the main theme of this 
paper, be given by giving the expected value of every well-defined function F(x l ,  ~ )  
with respect to distribution of xl given x2 �9 

The formula for conditional expectations is, f rom Eq. 30, for B a set of  positive 
measure, 

ExI{F(xl , xa)] xl(S) = X1, 5q(S) = ]'1, x.~ ~ B} 

1 = Z~l~{F(xl, *~) x~(x~)L xz(S) = X~, ,~(S) = Yl} (57) 

EII,x2{xB(X2) [ x].(S) = X 1 , 2 1 ( 3  ) z ~/~1} 

From Theorem 2.1 (for two-dimensional processes) this is equal to 

x exp 

+ z-1 Adz (t)+ ]sAdz (t))] n 

• exp [-(2A~)-~ f ~ (A~ + A~) ,tt 

where x2(S) = X2, "2(S) =- Y2. 
We now let B be a measurable set containing the observed x~, and multiply and 

divide the above fraction by E~w{~bB(,~ ~ )  z(~) d~ + X2)I z(S) = YJ;~}. 

'~ Other solutions to the nonlinear case have been obtained by Friedland and Bernstein, ~3) Kushner] TM 

Bryson and Frazier, m and others. 
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We now let B shrink down to the observed x2 �9 It may be shown that the integra- 
tion on the z2 variable disappears and that, wherever the z2 variable appeared, it can 
be replaced by 2z/A. Therefore, in the limit as B --+ xs, (57) becomes 

EJ{F(xl , 2z)l xl(S) -= X, 21(S ) -= Y, X~} 

= E~ w 1F(~t f(s'Z(a)dc~ -5 X,/~z(')) 

• exp [--(22t2) -1 fT s (A~ + A~) dt 

-5 ~--1 fSfl dz(t)-5 ~-2 fSf2d22(t) ] z ( S ) =  Y1~-1 t 

"-- EzW i eXp [--(2'~)-1 J'S (f12 -5 fez) dt 

We state the above result as a theorem. 

(58) 

Theorem 4.t .  Suppose the two-dimensional vector-valued function 
f~(t, x l ,  20,fe(t, xs,  x i ,  21) satisfies the conditions of Theorem 2.1 in vector form, and 
that the second derivative of the observed function, x~(t), is absolutely continuous. 
Suppose further that fs~ , ~ r l  ,f~x~ ,fsxl,  andf~r~rl exist and are continuous. 4 Then 

E~I{F(xl('), 2('))1 xl(S) = X, 21(S) = rl , xs(.)) 

• exp [--(212) - '  fT s (As + AS) dt 

+ ~-1 f r  r Sf 1 dz(t) + ~--2 f sf2 d22(t)][ z(S) = YI~--I I 

+ E, w lexp [--(22t~) -1 f :  (fl  ~ + f22) d, 

+ A -1 fS f l  dz(t)-5 A -~ fSAd22(t)] z (S)= Y1A-1 t (59) 

Theorem 4.1 gives a complete solution to the Kalman problem, since the expected 
value of any function of the xl process can be expressed given x~ and 22 . It is, of 
course, not in a convenient computational form. In Section 6, it will be shown how 
to evaluate ratios of Wiener integrals. Schilder (~8) shows that, in the case where 
f~ and f2 are linear, the result given here agrees with the original Kalman-Bucy result. 

T T . 4 These last conditions are necessary to ensure that fsf2 dz2(t) --~ fsf~ d22(t) as B --~ x~. 
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It will be shown now that, in the case that F(x, Se) happens to be of the form 
F(x, se) = c~(x(T), 2(T)), (59) can be evaluated using partial differential equations. 

Corollary 4.1. Suppose thatf~ and f2 satisfy the conditions of Theorem 4.1 
and that the partial differential equation 

rye(t, x, Y) + A wY - Yw~, + (1/A~) [A(t, x~(O, x, Y) ~(t) 

-- �89 X, g)] W+ �89 = 0 (60) 

has a well-defined solution for each of the terminal conditions 

W(T, X, Y) = q~(X, Y) > 0 (61) 

W(T, X, Y) ~- 1 (62) 

Then 

WI(S,X, Y )=  E~ ~ I r  j'~z(~)d~ 4- X1, )tz(T))exp [--(2 ,~) -1 f~ (fl ~ 4-f22)dt 

which is the numerator of the right-hand side of (59), solves (60) with terminal con- 
ditions (61), and 

W2(S,X, Y)= E~ ~ texp [--(213) -1 f2  (f12 4- f2Z)dt 4- A-1 f;fldZ(t) 

which is the denominator of the right-hand side of (59), solves (60) with terminal con- 
ditions (62). Both x2(t) and ~2(t) are assumed known. 

Proof. The proof  is immediate from Theorem 3.4. 

We note that, if f2(t, x~(t), xz(t), el(t)) does not depend on xl(t), ez(t), then 
knowledge of x~ gives no knowledge of x l ,  and f2 is just a function of t if x 2 is given. 
It is a well-known result that, in this case, solutions of (60) can be written in the form 

w(t, x, r) = wo(t, x, Y) 

•  l(1/ha)f~ [fe~2(t)--�89 f22] dt!, 

where Wo(t, X, Y) satisfies (60) with f2 = O. If Wo(t, X, I1) is given terminal conditions 
(61), then it can be seen that Wz(t, X, If), defined above, is simply 

Wo(t, X, Y)exp l(1/)t~) f~  [ f2~2( t ) -  lf2~] dt! 
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while by Corollary 2.1, W2(t, X, Y) is exp{(1/A2)J "r [f2~.~(t) - �89 dt}. Their ratio is 
the solution to the Kalman problem, and is just Wo(t, X, Y). By definition, Wo(t, X, Y) 
satisfies the ordinary backwards equation, as it should, since, in this case, there is no 
additional knowledge of xl �9 Other authors who considered the nonlinear Kalman 
problem apparently did not make this check. 

For other applications of Wiener integrals to engineering, see Wiener] 4~) Wiener 
et al., (44) MacDonald, (a~ and Schilder. (aG) 

5. A P P L I C A T I O N S  OF W I E N E R  I N T E G R A L S  T O  PHYSICS  

5.1. As stated in Section 2, Brownian motion was first devised to describe the 
motion of a particle in a fluid. While a number of characteristics of this model fit very 
well to the physical situation, by (6), the variance of the velocity of the particle is 
infinite. Classical kinetic theory holds (22) that the kinetic energy is proportional to the 
variance of the velocity, so that, clearly, some modification of the original hypotheses 
must be made. 

The equation 

2(t) = f ( t ,  x(t)) -+- fi2(t) q- )~(t), x(S) = X ~-~ p(S, X), 2(S) = u(S, X) (63) 

has been proposed to describe the motions of a particle in a solution whose position 
is x(t) at time t, which is acted upon by an external force f ( t ,  x(t)), by a drag force 
fi2(t), and by a random force t2(t) corresponding to the particle being bumped by 
molecules of the solution. The initial position of the particle, X, is now assumed to be 
random with a distribution equal to the normalized density of the particles at initial 
time S, and the initial velocity is assumed to be a function of the particle's initial 
position, u(S, x(S)). For more details, history, and applications of this model, see 
Chandrasekhar (~) and Nelson. (a2) Equation (63) is, of course, simply a statement of 
Newton's second law with a random force. Now 2(t) has the dimension of z(t), so that 
it has finite variance, While the model (63) was first proposed just to describe the 
motions of heavy particles in a relatively lighter solution, Kirkwood (27) and Kirkwood 
et al. (2s) show, for "liquids and other condensed systems," that the Ito equation (63) 
is actually a consequence of the (nonrandom) equations of motion of all the particles 
of the fluid; that is, for liquids and other condensed systems, x(t) can denote the posi- 
tion of a molecule of the system. Other authors (3~ have proposed that (63) can be 
used as a model for studying departures from equilibrium. 

We note that (63) is a special case of (1) if the initial conditions of (1) are ran- 
domized. If, now, F(x, ~) is some function of the position of the paths and their 
velocity, then it can be seen that 

EJ{F(x, ~)1 x(S) = X ~.o p(S, X), 2(S) = u(S, X)} 

= ExI{F(x, 2)[ x(S) = X, 2(S) = u(S, X)} p(S, X)  dX (64) 
- - c o  

where again the notation X ~-, p(S, X) means that X has the distribution p(S, X). 
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I f  f (t, x(t)) + riSe(t) and F(x, se) satisfy the conditions of Theorem 2.1, it follows 
from Theorem 2.1 and Eq. (64) that 

E,J{F(x(.), se('))l x(S)  = X #(S, X) ,  se(S) = u(S, x)} 

• exp --(22~) -1 f (t, 2 ( d~ dt 
s s 

+ J2-' 

From (65), it follows immediately that any thermodynamic function of a fluid or 
collection of particles whose equations of motion are described by (63) can be ex- 
pressed as a Wiener integral. The Wiener integral thus becomes a kind of  partition 
function for nonequilibrium problems. Two of the important parameters of fluid 
dynamics are the density at a point P at time T, p(T, P), and the average velocity u of 
all particles at point P at time T. They can be defined as 

p(T, P) ---- ~m {E,~[Xn(x(T))I x(S) = X --~ o(S, X), se(S) = u(S, X)]/[ B l} (66) 

(where B is an interval containing P, and ] B I is the length of B), and 

u(T, P) = EJ{e(T)I x(S) = X ~ p(S, X), se(S) = u(S, X), X(T) = P} (67) 

They can be expressed as Wiener integrals as follows: 

T h e o r e m  5.1.5 Supposef(t ,  x(t), se(t)) satisfies the conditions of Theorem 2.1; 
then the density p(T, P) at point P and time T is 

• exp [--(22e) -1 f S f  e dt + 2 -1 f~ fdz( t ) ]  

:and the flow (average) velocity at T, P is 

u(T, P ) =  [1/p(T, P)] E~ w 12z(T) p (S, P - - 2  f :  z(c~) dc~) 

( = 2- 'u (S, P -- A z(c 0 d•) (69) 

.5 Since no extra difficulty is involved, this theorem is stated and proved for a generalf(t, x(t), ~(t)) 
and not one of the form f(t, x(t)) + ~c(r). 
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Proof. 
E. Let, as before, 

X~(p,,)(X) = 1 

= 0  

By (65) and (66), 

Let B(P, e) be the interval [P -- �89 P + �89 Then l B t (the length of B) is 

if P - -  �89 <~ X <~ P + �89 

otherwise. 

f 
~ 

p(t, e)  = ~m -~ 

Thus, 

G~{x.(~,.) [;~ I] z(~) & + x] 

• expE(-2A2) -1 .frsfZ dt + A-~ f~fdz(t)]l  z(S) = A -~ u(S, X)} 
w T E~ {xB(P,~)(a ~ z(~) g~ + x)I z(S) = 0 - 9  u(S, x)} 

By (30), the first ratio of Wiener integrals is 

E. ~ texp [--(2Az) -~ f~f2dt + A -a fSf dz(t)] z(S) 

= t -1 u(S, X), ~ f z(a) d~ + X E B(P, e) 
S 

fi z(~) By definition, E-1E~w{Xn(~, ,)(A d~ + X)] z(S) = A-~u(S, X)} is 

e -~prob e - - ~ e  < ~  z ( ~ ) d ~ + X < ~ P + ~ e  z (S)=A-au(S ,X)  
S 

Therefore, 

iexp 1 + 

= h -1 u(S, X), h f z(~) dc~ q- X = e 
S 

p(r, P) = ~m I " t  -1 G'{x.(x(Y))l x ( s )  = x ~ p ( s ,  x),  e(s)  = u(s, x)} 

= l ime -1 f E~ w XB(e.,) A z(~) d~ + 
e ~ O  _ ~  S 

Multiply and divide (under the one-dimensional integral) by 

E~ IXB(e,o) (2t fS  z(a) da + X) z(S) : (1/2)u(S, X')I 
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where 

IA f~ z(o 0 do~ + X = P z (S )= ~-~ u(S, X)I d Prob 

is the density function of the random variable A f~ z(c~) da +X.  The function p(S, X) 
�9 o , T 

is now moved under the Wiener integral sign. Since h fs z(cO d~ 4- X = P in this 
T . . . .  

integral, it follows that X = P -- A fs z(a) do~. Making th~s subshtutaon whenever J( 
appears, 

•  [--(2h2) -~ f : f "  4- A -1 f : f  dz(t)] z(S) 

• dProb  A z(o O d a = P - X  z ( S ) = u  S ,P- - ,~  z(c~)do~ dX 
�9 S S 

We now change variables in the one-dimensional integral, letting P -- X = R, 
and the result follows from Lemma 2.4 (read from right to left). 

By definitions (67) and (30) 

u(T, P) = lim EJ{2(T) XB(x(T))I x(S) = X ~-~ o(S, X), e(S) = u(S, X)} 
B~P E2{X~(X(T))i x(S)  = X ~ o(S, X),  ~(S) = u(S, X)} 

This expression can be rewritten, in the same way as p(T, Z), as 

u(T, P) = lim f-~ E'w{)tz(T) ~} p(S, X) dX 
,-o J':oo E,~{~} p(s, x )  d x  

with 

Multiplying and dividing this expression under each one-dimensional integral 
sign by E,~{XB(p,,)(A fTz(a) da 4- X)[ z(S) = A-lu(S, X)} and using (30), we have 

u(T, P) 

= lim 

with 

"-~ J'~_o~ E,~{~} J'-~o~ E,w{XB(v.,)( A J'T Z(c0 da + X)[ z(S) = a -~ u(S, X)}p(S, X) dX 

~1~ exp [--(2A2) -1 f~f~ dt + )t -~ f~f dz(t)] z(S) 

T 

----- A -~ u(S, X), 2~ f z(~) da 4- X s B(P, E) 
S 
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Upon multiplying and dividing this expression by e and taking the limit in the 
same way as with p(t, P), we obtain the desired result. 

Jeans (221 defines the kinetic energy of a nonequilibrium fluid at a point to be pro- 
portional to the mass of the molecules concerned times the variance of their velocity 
a t the  given point. Thus, if the units are picked properly, kinetic energy can be defined 
in the present case at time T and point P as 

K.E. (T, P)  = EJ{[2(T) - u(T, P)]Z I x(S) = X ~  p(S, X), ~(S) = u(S, X), x(T) ---- P} 

(70) 

Jeans also shows that the pressure at a given point is proportional to the kinetic 
energy of the fluid at the point times the density of the fluid at the point. Thus, if the 
units are picked properly, 

Pressure(T, P)  = K.E. (T, P) p(T, P) (71) 

where K.E. (T, P)  is defined by (70) and p(T, P) is defined by (66). Of course, both 
kinetic energy and pressure have representations as Wiener integrals in the same 
way as the density and average velocity do. 

The proof  of the following theorem is given in Schilder. (39~ It is too long to be 
given here. It shows that p, u, and Pressure satisfy a system of nonlinear partial 
differential equations similar to the Navier-Stokes equations. 

Suppose f ( t ,  x(t), so(t)) satisfies the conditions of Theorem 2.1. 

(72) 

(73) 

Theorem 5.2. 
Then 

lim p(T, P) = p(S, P), lim u(T, P) = u(S, P) 
T ~ S  T->S 

p~ + (up)~ = 0 

ut + uue ~- ( -Qp/p)  + EJ{Z(T, x(T), Sz(T))[ x(S) 

= X ~ p(S, X), So(S) = u(S, X), x(T) = P} (74) 

with p and u definedfby (66) and (67), and Q(T, P) = Pressure(T, P). In the case that 
f ( t ,  x(t), se(t)) is of the fo rmf ( t ,  x(t)) ~- fig(t), the last term of (74) can be written as 
f (T ,  P) + flu(T, P). 

For other applications of Wiener integrals to physics, see Feynman and Hibbs,(m 
Kac, (2a~ Wiener, (43~ Wiener et al., (44~ MacDonald]  3~ Nelson, (32) Martin and 
Segal, (31~ Gimibre, a6~ and Gelfand and Yaglom. (15~ 

6. E V A L U A T I O N  OF W I E N E R  INTEGRALS 

6.1. In this section, a power-series expansion in even powers of A for Wiener 
integrals will be given. This series first appeared in Schilder, ~5) although the coeffi- 
cients were not evaluated there. First, a lemma is needed. It shows how to evaluate 
"Gaussian Wiener integrals" (see Feynman and Hibbs(m). 
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L e m m a  6.1. Suppose that  the functions al(t) ..... a6(t) are cont inuous in the 
interval S ~ t ~ T, and tha t  the ricatti equat ion 

C4(t) = [a4(t) - -  C4(t)] 2 § 2al(t) - -  2C5(t) 

Cs(t) = [a4(t) - -C4(t ) ] [as( t )  -- Cs(t)] 4- a2(t) -- C6(t) (75) 

C~(t) = [as(t) - -  Cs(t)] 2 4- 2as(t) 

with C4(T) = - - 2 a  8 , Cs(T) = - -aT,  and CG(T) = - - 2 a s ,  has a solution. 
Let  B(t) be the matr ix  

Blx(t ) : aa(t) -- C4(t), B12 = as(t) --Cs(t), B21(t) = 1, B22(t ) = 0 

Suppose that  the matr ix  q)hj(h, j = 1, 2) is an invertable matr ix  solution 6 to the 
equat ion 

2 

d ~hj(t) ~ B,~iq)ij(t) (76) 
dt i 

Then ~ 

E~ w IF(z)exp ( f ;  lal(t)z2(t) + a2(t)z(t) f*sZ(CO d~ + a,(t)[f*sZ(=) dc~]2l dt 

+ f; + = 0 I 

Proof. Let the a4(t) and as(t) in the I to  integral in the Wiener integral on the left- 
hand  side of  (77) be 

a4(t ) = b4(t ) + C4(t), as(t ) = b~(t) -~ Cs(t ) (78) 

where C~(t) and C~(t) are defined by the hypothesis o f  this theorem [i.e., (75)]. 
Consider  now the following function: 

F(t, X, Y) = �89 y2 + Cs(t) YX + �89 ) X z 

Substituting this F into (22), we have that  

T 1 T 2 

T 1 es(t )z(t) ~ Z(a) 4- ~ C6(t)[f s ~ dt = fsI~(t)z~(t)+~ f~ da 1 t z(~) d~] I 

4- f :  [C~(t)z(t) + C6(t) ffs z(c~)da] z(t)dt 
T t 1 ~,T 4- fs[C~(t)z(t)4-Cs(t) fsz(~)d~]dz(t)+~j C~(t)dt (79) 

It is shown in books on differential equations that such a (P always exists. 
This lemma is a generalization of Cameron and Martin's work. (~ 

82z/z/3-9 
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In the Ito integral in (79), substitute the values of Ca and C5 given by (78) and 
then solve the equation for the Ito integral involving the a's. Thus, 

t 1 ~ 2 

-- f :  l 1 r z~(t) + C~(t)z(t) f s  z(a)da -}- -~ r z(a)da] l dt 

T ~ 1 r 1C~(T)z~(T ) -- fs[Cs(t)  z ( t )+ C~(t) f s z (~)d~]z ( t )d t - -5_  fsCa(t)  dt + ~  

1 C~(T)z(T) f r  1 [ f r  1~ 1 +2- s z(~) d~ + ~ G ( T )  ~ z(~) d~ - -  ~ G ( s )  z~(S) 

Substituting this result into the Wiener integral on the left-hand side of (77) and 
collecting terms with like coefficients, z, z ~, and dz, we find that the left-hand side of 
(77) becomes  

1 

-}- fs  [ a ~ ( t ) -  ~ (~6(t)][fsZ(a) ~ 1 

~ f~ ~(,~ ~, - ~ c~(~z~(~)) ~(~ = o I (8o) 

Using the differential equations (75) with the terminal conditions and remembering 
that b4(t) = aa(t) -- C4(t) and bs(t) = as(t) -- Cs(t), we find that (80) becomes 

1 T t 

1 T ~ ~ f r  

1 T 1 01 2 f s  C~(t) dt -- ~2 C4(S) z2(S)) z(S) = 

This can be rewritten as 

1 T t 2 

T , 1 C4(t) dt] (81) + f~ [~o(t)z(.) + ~(.) f~(~)~o] ~z(.)) z(~)- o I e .  [ -  ~ f~ 
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which is a more familiar form [see (27)]. We can write (81) in the flat-integral form as 

1 T ~ 
I F(z)exp (--  ~ fs  [b,(t)z(t)+ bs(t) j s z(c0 d~ -- ~(t)]2dt) z(S)= 0 I 

1 r dt] • ~z exp [--  ~ f s C4(t) (82) 

which shows that we have just completed the square in the Wiener integral on the 
left-hand side of (77). To complete the analysis now, we let 

x(t) = z(t) - f ;  [b4(~)z(~)+ bs(a) f ;  z(fl) d~] d~ (83) 

and substitute this expression into the right-hand side of (77). Using the transforma- 
tion theorem, we get for the right-hand side of (77) 

Ezw IF (~i, ~ ) 1 i ( ' ) f ; '  ~).~11(~) dz(oL)- ~~i (J~l i ( ' ) f ; )~z11(~)  b4(g)z(o~)d~ 

i 
1 T ~ 2 

• exp (--  ~ fs  [b,(t)z(t) + bs(t) fs  z(~)da] dt 

+ fs [ba(t)z(t)4- bs(t) fs  z(a)d~] dz(t)) z(S) = 01 exp [--  ~ s 

To complete the proof of this corollary, it is now sufficient to show that [see (81)] 

2 t g t 

i S i S 
2 ~ a 

--  Z ~)li(t) f [ (~11(0g) 55(06) f Z(~) d[3] do~ = Z(t) (S <~ t <~ T) (84) 
i s s 

We note, that if we integrate by parts s the first term on the left-hand side of (84), 
we get 

2 t ~ 1 t d I Zi ~ l i ( t )  f S ~ '11(~)dz(o~)= ? .  (~)li(t) * • l ( t ) z ( t ) -  f s -~  [*~11(0~)] Z(O~)d~ (85) 

Since ZJ ~bhJ(t) r = 3h~ ,9 it follows that 

~ d 2 d 
�9 ~- [ ~hj(t)] ~ ;  l(t) = -- Z tDh~(t) -~- [05; x(t)] 

J 

We again use (22), of course, with El(T, fr s z(oO d% z(T)) = (PT~(T)z(T). Since the F~ are just linear 
functions of z, their second derivatives with respect to z vanish, and we have the ordinary integration- 
by-parts formula. 

9 Here, 3~k is the identity matrix. 
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From (76) and the last equation, it follows that 

2 ~ d 
Z Z Bhi(t) ~ij(t) ~ l(t)  = - -  Z ~hj(t) --dl [1~-1(/)] 
i j j 

which is clearly equivalent to 

2 d 
= --  Z r  y{  [ 71 (t)] 

J 

Multiplying through by --q)-l, we get 

d 
- -  ~, q~(t)Bhk(t) = ~ [~2(t)]  (86) 

h 

Substituting this into (85) and multiplying it out, it follows that 

2 ~ t 
Z e l i ( l )  f 1~11(~ dz(~ = z(t) ~- Z Z qSzi(t) f e~ (a) Bhl(O0 Z(c~) do~ 
i S i h S 

Writing out the h summation on the right-hand side of (87), we get 

(87) 

Y f z(t) + ~ ~gzi(t ) qS~a(e~) Bzz(c~) z(~) d~ + ~ ~li(t) q)g(~) B2z(a) z(a) dc~ (88) 
i S i S 

From (84), (85), (88), and the definition of the B matrix, it follows that it is 
sufficient to show that 

2 t 
Z ~1i( /)  f ~)721(~176176176 = 2 e l l ( t )  f [~11(0~) bs(~ f z(]~)d]~] do~ (89) 
i s i s s 

Since B21(t ) = 1, the left-hand side of (89) is Z i  ~li(t) J ;  q5~1(c~) z(o0 dc~. Integrating 
this by parts again, we get for the left-hand side of (89) 

The first term of the above is zero, by the definition of ~b, and the second becomes, 
using (86) again 

t cx 

i h S S 

But, since B12(~ ) = bs(a) and B22(a) = O, by definition, it follows that (90) is exactly 
the fight-hand side of (89), which was to be shown. 

6.2. It will now be shown that Wiener integrals of a general form can be expan- 
ded in an asymptotic series in powers of X, and that the terms of this series can be 
evaluated term by term by methods that require nothing more than the solution of  
ordinary differential equations and quadratures. This asymptotic series, of course, 
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becomes more accurate as A -+ 0. I f  A = 0, then it follows that (1) no longer defines 
an Ito distribution, but becomes an ordinary differential equation; it follows that (27), 
for example, becomes F(x(.), ~(-)), where x solves (1) with A = 0. More precisely, 
we have the following theorem: 

T h e o r e m  6.1. Suppose: (1) that the function 

D(z) = f2L  (t, f)z(oOdo~ 4- X,z(t))dt + f~ f ( t ,  f;z(o~)dc~ + X,z(t))dz(t) 

+ r z(~) d~ + X, z(r)) - fs  [e(t)]2 dt (91) 

has a unique maximizing function, 2(t), over the set of all z's in C[S, Y, I"] which are 
�9 . . T 

absolutely continuous and whose demvatlves have the property that fs [~(t)] 2 aft < oo. 
(2) That f(t, X, Y), L(t, X, I7), and r Y) have n + 2(n ~> 0) continuous 

X and Y derivatives for all t s [S, T], X and Y real�9 

(3) That the function F(z) has a Volterra series expansion about ~(-) out to n + 1 
terms�9 (See Volterra (4m for an exposition of Volterra series.) 

(4) That the matrix riccati equations 

, 2 8~ . ~(t'(s2(~176 + (~4(t) = [~-~f(t f sY~(a) da 4- X, ~( t ) ) -  C,(t)] 4- ~ L ~ X,Y~(t)) 
t 

t X(t)) d'2(t) 2C5(t) v' ~yy f (  , f sYC(~)aa 4- x, 

(t, ' x, + ~--X~-Y L f s d~ + 
8 t 

2(0) d2(t) C6(t) + f x, 

2 83 ( t ,  * Cn(t)= [~-~f(t, f;'2(a) do~ 4- X, 2 ( t ) ) -  Cs(t)] 4- ~ L . fs  2(e~) do~ .+ X,Y:(t)) 
82 t 

with terminal conditions 

C~(T) -- 

Cs(T) -- 

C,(T) - -  

oy~ r x(~) a~ + x, ~(T)) 

8X 8Y r ~(~) da + X, .~(T)) 

~x ~ r x(~) d~ + X, ~(T)) 
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have a solutionY ~ Let 

1 ~ ( 2  T ~2 

M(r) = ~ j )  f ~X~_ ~ ~Y~ 
~=0 S 

X 

~. , a x e _  ~ ~ r  j f t, ~(o~) dc~ -f- X,  ~(t)  
j=0 �9 S S 

• j d (t) 

r ~ f 
j=0 S 

': (s; + ] ~X2-s 9ys 4 ~(a) da + Z,  ~(T))  
i=0 

for  r ~ C[S, O, T]. Then it follows t h a  n 

Ez ~ !FOiz)exp [Jr -~ fS L (t,~ fs z(c~)d~ + X, )lz(t))dt 

+ >-1 f S f ( t , a  + X,)~z(t))'dz(t) 

,.-!-. /~--2 ~ (/~ fSz(oOdo ~ _3 7 ]i/ ,~z(T))] z (S) :  ~gr)~--I I 

- -  exp[bh-~](Yo -t- A~/~ + Jq '~  -7 "'" -k h~/~  + O(h'~+l)) as h ~ 0 (92) 

b is the m a x i m u m  value of  the function defined in (1) above,  / 'o is 
F(~) exp[--f~C~(t)dt], and the F~. are Wiener integrals which can be evaluated 
numerically. 

Proof. n We write the Wiener integral (92) in the flat-integral fo rm and expand 
out all its terms in Volterra series abou t  ~, the maximizing function. 

zo AI| integrals involving d~(t) or ~(t) are interpreted as ordinary Stieltjes integrals. This is possible 
since, by hypothesis (1), :b(t) exists in the ordinary sense. 

lz See also Pincus ~4J and Varadhan. ~4~ 
~ The fiat integral is used in this proof because of its intuitive appeal. The proof is, however, entirely 

rigorous. 
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Thus, 

f* 
1 r t 

] " 
- - F~ V., <3x,-~ <3r~ = F~(X)(3z "2) ~ + O(Az .~)~+z exp ~ -  s i=o J=o 

i=O 

f' ~ (', f** ~ ~~ + ~, ~('))b f*s*) ~ -  s ~ ( ~  - ~,~1, ~ 

1 lfrn+2~ol (j) <3' ( f' +-~O(Az - -  2)"§ s "~=o ~" <3X,_s<3rsj" t, 2(oOdo~ + X, 2(t)) 
" =  " S 

' X O(~z - ~):+~ 

+ ~ ~o 77-., <3.,v,-~ <3rJ r .~(<~) do< + X, ~(m) "= j=0 

1 1 T[z(t)] 2dt  t 3z • [Az(T) - -  X(T)I j + ~ -  O(M - -  2)-+3 - -  ~ f s  

Change  variables now by the t ransformat ion  theorem 2.1,  let t ing 2 z  - -  2 = ,~r; 
then z ----- (s + ;~r)/1 and r(S) = 0. Thus, substituting in the above,  we find tha t  (92) 
is equal to 

A' 1 s d~ + X, ~(t) • exp  ~ s ~=o ~=o ~" <3X*-~ <3 Y~ L (t, 
�9 , , $ '  

10(.~r)~+ ~ 

1 (r"+~ ,~ (.j.) <3, 
+ ~-ff �9 s ~=o s=o -~" OX'-s <3Yj 

( f  )[f' ]'-' • f t, 2(c 0 do~ + X, X(t) rOx) da  [r(t)] ~ d,Y(t) 
s s 
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+ ~ z ~=o =o ~-" OX *-j OY~ 

+V10(,~r)~+~ + ~100r)~+ ~ 

+ ~ 1  '~+~ ~,~ 1 (~), ~ (f~ ) [ ~  ]~-~ ~=o j=o ~" 8X,-J cqyJ $ 2(a) d~ + X, ~(T) s r(a) da [r(T)]~ 

1 lfr if, Aft 1 + ~ O ( A n + a ) - - ~  s[~(t)]2--~ s~(t) dr(t)--~ s[~(t)] 2dt 3r 

We now collect all terms in the exponent whose coefficients are 1/A s or 1/A. The 
term whose coefficient is 1/A S is 

s;~ (,, ;s.~, ~ + ~, ~,:,,t ~, + s?(,, .~;.~,:~,, ~,~ + ~, ~,:,t ,~,:,, 

+ ~ ~(~) a~ + x, ~(:r')) - ~s [~(t)]~ dr. (93) 

But (93) is exactly (91) with ~ substituted for z. Since, by definition, ~ maximizes 
(91), it follows that (93) is the maximum value of (91) which was defined in the hypo- 
thesis of this theorem to be b. 

The term whose coefficient is 1/) is 

+ f ' s f (  t, fsY~(~) d~ -? X,~Y(t))dr(t) 

-T  

-- J s ~(t) dr(t) (94) 

Since ~ maximizes (91), it follows that, if.~ + Ar [where r is in the class of func- 
tions defined by assumption (t) of this theorem] is substituted for z in (91) and if 
(91) is then differentiated with respect to A, the result is zero. This is the standard 
procedure in the calculus of variations and is the way usually used to derive the Euler 
equation of the calculus of variations. 
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n+2 

+E 
i=2 

n+2 

+Y 
i=1  

n+2 1 Ai_2 
2T, 
i=g 

[~(01 ~ 2 s 

If  this substitution and differentiation is actually carried out, then one finds that 
the derivative is exactly (94); it therefore follows that (94) is zero for any r in the class 
of functions defined by assumption (1) of this theorem. It can be shown that one can 
go from this result to the result that (94) vanishes for almost all r ~ C[S, O, T]. 

It therefore follows, making the substitutions for the 1/)~ 2 and 1/)~ terms, that (91) 
is equal to 

exp[~]~[~i=o)tiF(i)(~y)ri+O(r~t)~+l ] 

• exp i~=2 ~. ~ f OX i-j OY~ L(t) [r(t)]J dt + O(rA) ~+1 
"= �9 j = O  S 

1 )~-2 f aX~_,agjf(t ) r(~)do~] [r(t)lJdY~(t)+ O(rA) ~+1 
~-" j=O S 

1 A,_~ ~ \J] fs  eXi-JoYJf(t)lds r(~176 '[r(t)lJdr(t)~- O(rA)~+2 
~ "  j=O 

+ ox ,_  j ey~ q~(T) r(~) d~ [r(T)l ~ + O(rS) ~+~ 
04=0 

(95) 

In (95), the arguments of L, f ,  and )t depend on t, T, and ~ only. They do not 
depend on the variable of integration r. Thus, we are justified in writing L, for example, 
as a function of t only. 

The partial derivative operators in front of these functions mean: take the partial 
derivatives first, and then substitute in ft. 

It can be seen that there are no longer any negative powers of )t in (95). We now 
separate the exponent in (95) into two parts. The first contains the terms which do not 
depend on )t, the second contains all the other terms. 

It can be seen, using the Taylor expansion of exp[X] around zero, that 

where 

n--1 

exp[X] = ~ (XTJk !) -t- R.(X) (96) 
k=O 

[ R.(x)l <~ (X~/n!) exp[X]. 

The exponential term containing terms which do not depend on ~ is left alone. 
1 T This, it can be seen, is exactly exp{M(r) -- 2 fs [r 2 dt}, where M(r) was defined in 

hypotheses (4) of this theorem. The second exponential term is expanded out to 
n + 2 terms, using (96). Since every polynomial in this exponent contains 2t at least 
to the first power, it follows that the R~(x) of (96) will have a factor of A~+I in front 
of it. It can be shown that the remainder of this term multiplied by exp[M(r)] and 
integrated with respect to Wiener measure is finite, using assumption (4) of this 
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theorem and Lemma 6.1. It can also be seen that (95) can be written as a Wiener 
T 

integral, due to the presence of the last term, --�89 f s  [:(t)] 2 dt, an the exponent. 
Putting all of the above together, we finally arrive at the fact that (92) is equal to 

j = 0  

+ ~" ~.~+2 1 A~_2 r ~i [ (t r(~) d~ [r(t)] j dt 
/ = 3  j = 0  S 

@ i~=2 _~}~i--l~ JS ~X'-'-~f(t)[:s r(t) d~]i-:[r(t)]'dr(t) 
J 

)o(:) r' ,)] n+'~ 1 Ai_2 ~i r "-" k 
+ ~. -{(. ~Xi_: ~y: d?(T (~) do~ [r(T)] j + O(rA ~+1 

i = 3  = , 

• exp[M(r)] r(S) = 01 + O(A "+1) 

This expression is now expanded out over each of the sums i, j, and k in powers 
of A. The first term, corresponding to the zeroth power of A, is 

exp[b/A ~] E~w{F(ff) exp[M(r)]f r(S) ----- 0} ----- exp[b/A 2] F(~) E,.W{exp[M(r)]I r(S) = 0} 

which, by Lernma 6.1, is exp[(b/A 2) -- 1 r 3- fs  C4(t) dt] F(2), as was to be shown. 
The other terms are all Wiener integrals involving exp[M(r)] multiplying integrals 

�9 . t T 
revolving powers Offs r(,) d~, r(t), and dr(t) and terms of the form r(T) and f s  r(a) dc~. 
The first step in evaluating Wiener integrals of this type is to apply Lemma 6.1 to 
eliminate the exp[M(r)] term. All the coefficients are now Wiener integrals simply 
involving powers of Ito integrals, where the integrands of the Ito integrals are func- 
tions only of time�9 Lernma 2�9 shows how to evaluate this type of Wiener integral. It 
can be seen that, if A appears to an odd power in front of the T"s, then the Wiener 
integral involves r to an odd power. Since, if, in lemma 2.2, z appears to an odd 
power, the integral vanishes, it follows that all f "s  which have A to an odd power 
multiplying them vanish; thus, the series given by this theorem involves only even 
powers of A. 

The reader has undoubtedly gotten the impression that the procedure advocated 
above is complicated--computationwise, it is, of course. However, it must be remem- 
bered that it brings within computational grasp the solutions of a large number of 
problems in engineering and physics�9 The complexity arises mostly in keeping track 
of a large number of loose indices which are floating around, which is not insurmoun- 
table. The differential equations to be solved are the Euler equation for the functions 
(91), the riccati equation of Lemma 6.1 and the linear ordinary differential equations 
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to obtain the qb of  Lemma 6.1. Once these equations have been solved, by numerical 
means, if necessary, then all the ; " s  can be computed  by quadratures. 

The approximat ion here is also a physically very relevant one, because, very 
often, one is interested in how a small amount  o f  noise will perturb an otherwise 
stable deterministic system. 

This expansion is also very relevant in the quantum-mechanica l  case. I t  can even 
be made rigorous if one uses Cameron and Storvick's result (5~ instead o f  the trans- 
format ion  theorem 2.1. While L e m m a  2.2 does not,  as yet, have an analog for  
Feynman integrals, Lemma 6.1 can be rigorously proved using present techniques. 

Theorem 6.1, in this case, shows that, as h --+ 0 (Planck's constant), the quan tum 
theory converges to Newtonian mechanics. The expansion is also much better than 
all others that  the author  has seen, due to the fact that  it is in terms o f  powers of  h and 
not  powers o f  1/h. The convergence is therefore extremely rapid, since h is very small. 

Erdelyi (10) shows that  asymptotic  expansions are unique. Thus, there are no 

expansions for  the various functions discussed in this paper in terms o f  a small variance 

parameter other than the one given. 

Theorem 6.1 can be modified to handle the case o f  boundary  condit ions or  o f  
condit ioning of  the type given by Theorem 5.1. 

For  other ways o f  approximating Wiener integrals see Feynman  and  Hibbs, (11) 
Finlayson, ~1~) or  Cameron and Martin.  (~) 
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